A Bayesian nonparametric approach for time series clustering

نویسندگان

  • Luis E. Nieto-Barajas
  • Alberto Contreras-Cristán
چکیده

In this work we propose a model-based clustering method for time series. The model uses an almost surely discrete Bayesian nonparametric prior to induce clustering of the series. Specifically we propose a general Poisson-Dirichlet process mixture model, which includes the Dirichlet process mixture model as particular case. The model accounts for typical features present in a time series like trends, seasonal and temporal components. All or only part of these features can be used for clustering according to the user. Posterior inference is obtained via an easy to implement Markov chain Monte Carlo (MCMC) scheme. The best cluster is chosen according to a heterogeneity measure as well as the model selection criteria LPML (logarithm of the pseudo marginal likelihood). We illustrate our approach with a dataset of time series of shares prices in the Mexican stock exchange.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Order-Adaptive Clustering for Video Segmentation

Video segmentation requires the partitioning of a series of images into groups that are both spatially coherent and smooth along the time axis. We formulate segmentation as a Bayesian clustering problem. Context information is propagated over time by a conjugate structure. The level of segment resolution is controlled by a Dirichlet process prior. Our contributions include a conjugate nonparame...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Detailed Derivations of Small-Variance Asymptotics for some Hierarchical Bayesian Nonparametric Models

Numerous flexible Bayesian nonparametric models and associated inference algorithms have been developed in recent years for solving problems such as clustering and time series analysis. However, simpler approaches such as k-means remain extremely popular due to their simplicity and scalability to the large-data setting. The k-means optimization problem can be viewed as the small-variance limit ...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013